Compare Area of Rectangles

1. Calculate the area of each rectangle and compare them using $<,>$ or $=$. The first has been done for you.

Rectangles not drawn to scale.

a.

b.

c.

d.

e.

2. Draw two rectangles with different areas and compare them using < or >.

								-				

Compare Area of Rectangles Answers

1. Calculate the area of each rectangle and compare them using <, > or =.							
Number	Length	Width	Area $=$		Length	Width	Area $=$
a.	8 cm	4 cm	$32 \mathrm{~cm}^{2}$	<	7 cm	5 cm	$35 \mathrm{~cm}^{2}$
b.	5 cm	5 cm	$25 \mathrm{~cm}^{2}$	>	6 cm	4 cm	$24 \mathrm{~cm}^{2}$
c.	3 cm	8 cm	$24 \mathrm{~cm}^{2}$	=	12 cm	2 cm	$24 \mathrm{~cm}^{2}$
d.	7 cm	4 cm	$28 \mathrm{~cm}^{2}$	$>$	9 cm	3 cm	$27 \mathrm{~cm}^{2}$
e.	9 cm	4 cm	$36 \mathrm{~cm}^{2}$	=	6 cm	6 cm	$36 \mathrm{~cm}^{2}$
2. Draw two rectangles with different areas and compare them using < or > .							
Accept any two rectangles compared correctly.							

Compare Area of Rectangles

1. Here are some rectangles drawn to scale. Measure and calculate the area of each rectangle. Compare each pair of rectangles using <, > or $=$.
a.

6 cm

b.

6 cm

c.

2. Look at the dimensions of these rectangles. Can you complete the table by comparing each pair of rectangles?

Rectangle A	Rectangle B
$9 m \times 6 m$ Area $=$ \qquad m^{2}	$\begin{gathered} 8 \mathrm{~m} \times 7 \mathrm{~m} \\ \text { Area }=\ldots \quad \mathrm{m}^{2} \end{gathered}$
$9 m \times 9 m$ Area $=$ \qquad m^{2}	$10 m \times 8 m$ Area $=$ \qquad m^{2}
$12 \mathrm{~m} \times 6 \mathrm{~m}$ Area $=$ \qquad m^{2}	$8 \mathrm{~m} \times 9 \mathrm{~m}$ Area $=$ \qquad m^{2}

3. Draw two rectangles with a difference of $\mathbf{1} \mathbf{c m}^{\mathbf{2}}$ and compare them using < or >.

4. Rectangles must always have the same length and width in order to have the same area. Is this statement true or false? Explain your answer fully.

Compare Area of Rectangles Answers

1. Here are some rectangles drawn to scale. Measure and calculate the area of each rectangle. Compare each pair of rectangles using <, > or $=$.

Number	Length	Width	Area $=$		Length	Width	Area $=$
a.	6 cm	4 cm	$\mathbf{2 4 \mathrm { cm } ^ { 2 }}$	$=$	8 cm	3 cm	$\mathbf{2 4 \mathrm { cm } ^ { 2 }}$
b.	6 cm	6 cm	$\mathbf{3 6 \mathrm { cm } ^ { 2 }}$	$>$	7 cm	5 cm	$\mathbf{3 5 \mathrm { cm } ^ { 2 }}$
c.	4 cm	7 cm	$\mathbf{2 8 \mathrm { cm } ^ { 2 }}$	$>$	9 cm	3 cm	$\mathbf{2 7 \mathbf { c m } ^ { 2 }}$

2. Look at the dimensions of these rectangles. Can you complete the table by comparing each pair of rectangles?

Rectangle \mathbf{A}		Rectangle B
$9 \mathrm{~m} \times 6 \mathrm{~m}$	$<$	$8 \mathrm{~m} \times 7 \mathrm{~m}$
Area $=54 \mathrm{~m}^{2}$	$>$	Area $=56 \mathrm{~m}^{2}$
$9 \mathrm{~m} \times 9 \mathrm{~m}$	$10 \mathrm{~m} \times 8 \mathrm{~m}$	
Area $=81 \mathrm{~m}^{2}$	$=$	Area $=80 \mathrm{~m}^{2}$

3. Draw two rectangles with a difference of $\mathbf{1} \mathbf{c m}^{\mathbf{2}}$ and compare them using < or >.

Accept any two rectangles with a difference of $1 \mathrm{~cm}^{2}$.
4. Rectangles must always have the same length and width in order to have the same area. Is this statement true or false? Explain your answer fully.

Accept any explanation that shows that the statement is false. For example, a rectangle could be 5 cm in length, 4 cm in width and have an area of $20 \mathrm{~cm}^{2}$ while another could have a length of 20 cm , a width of 1 cm and also have an area of $20 \mathrm{~cm}^{2}$.

Compare Area of Rectangles

1. Rectangles must always have the same length and width in order to have the same area. Is this statement true or false? Explain your answer fully.

2. If the length and width are whole numbers, you cannot have a square with an area of $\mathbf{1 2} \mathbf{c m}^{\mathbf{2}}$. Is this statement true or false? Explain your answer fully.

												\mid					

3. These rectangles have different dimensions but an equal area.

Rectangles not drawn to scale.

One rectangle can be cut once and rearranged to make the other rectangle. What could the dimensions of each rectangle be? Where would one be cut?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Compare Area of Rectangles Answers

1. Rectangles must always have the same length and width in order to have the same area. Is this statement true or false? Explain your answer fully.

Accept any explanation that shows that the statement is false. For example, a rectangle could be 5 cm in length, 4 cm in width and have an area of $20 \mathrm{~cm}^{2}$ while another could have a length of 20 cm , a width of 1 cm and also have an area of $20 \mathrm{~cm}^{2}$.
2. If the length and width are whole numbers, you cannot have a square with an area of $\mathbf{1 2} \mathbf{c m}^{2}$. Is this statement true or false? Explain your answer fully.

Accept any explanation that shows that the statement is true. For example, a square must have an equal length and width. As 12 is not a square number, no whole number can multiply by itself to make 12 .
3. These rectangles have different dimensions but an equal area. One rectangle can be cut once and rearranged to make the other rectangle. What could the dimensions of each rectangle be? Where would one be cut?

Accept correct answers based on a square and rectangle. For example, if the square has dimensions of $6 \mathrm{~cm} \times 6 \mathrm{~cm}$, it could be cut in half once and rearranged to make a rectangle with dimensions of $12 \mathrm{~cm} \times 3 \mathrm{~cm}$. Both of these rectangles will have an area of $36 \mathrm{~cm}^{2}$.

